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Abstract. A time-dependent electric field gives rise to a stationary non-equilibrium current I(2) around
a mesoscopic metal ring threaded by a magnetic flux. We show that this current, which is proportional
to the intensity of the field, is closely related to the exchange part of the interaction contribution to the
equilibrium persistent current, and that the corresponding non-linear conductivity directly measures the
weak localization correction to the polarization. We explicitly calculate the disorder average of I(2) in the
diffusive regime as function of the frequency of the electric field and the static flux piercing the ring, and
suggest an experiment to test our theory.

PACS. 73.50.Bk General theory, scattering mechanisms – 72.10.Bg General formulation of transport
theory – 72.15.Rn Quantum localization

1 Introduction

Electron-electron interactions in disordered mesoscopic
metals are not very well understood. The usual pertur-
bative machinery of many-body theory is not always ap-
plicable in these systems, because often the intricate inter-
play between interactions and disorder in phase coherent
systems cannot be described by means of simple pertur-
bation theory. The persistent current [1] in a mesoscopic
diffusive metal ring threaded by a magnetic flux belongs to
this category. Seven years after the seminal experiment by
Lévy et al. [2], there seems to be general agreement that
electron-electron interactions are essential to explain the
surprisingly large magnitude of the experimentally mea-
sured average persistent current in an array of 107 Cu-
rings. Note that the experiment by Lévy et al. has recently
been independently confirmed [3].

In this work we shall study electron-electron inter-
actions in mesoscopic metal rings by means of a some-
what unconventional approach, which is based on the con-
nection between electron-electron interactions on the one
hand, and non-linear response to an external electromag-
netic field on the other hand. In the context of persistent
currents this connection has recently been pointed out
by Kravtsov and Yudson [4], who considered the time-
independent part of the non-equilibrium current propor-
tional to the intensity of an external longitudinal electric
field E(t) = <[E(ω)eiωt],

I(2) = <
[
σ(2)(ω, φ)

]
|E(ω)|2 . (1)

The so defined non-linear conductivity σ(2)(ω, φ) (see
Eqs. (47, 48) below) is a function of the frequency ω of

the external electric field, as well as of the static flux φ
piercing the ring. The fact that non-linear response and
interactions are closely related becomes obvious in a path-
integral approach. Indeed, it is well-known [5] that the
Coulomb interaction between electrons can be obtained by
integrating the exponential of the coupled Maxwell-matter
action over the fluctuating quantum electric and magnetic
fields. However, in a path integral approach we may also
perform the integrations in a different order. Thus, an al-
ternative method to obtain the equilibrium current is to
calculate first the non-equilibrium current for a given real-
ization of the electromagnetic fields, and then performing
an average over these fields. The effective action for this
averaging procedure is obtained by integrating first over
the electronic degrees of freedom, keeping the electromag-
netic fields fixed. In this work we shall show that this
procedure leads to new perspectives in the role of electron-
electron interactions for persistent currents, which can be
tested experimentally by means of non-linear transport ex-
periments. We shall also re-examine an earlier calculation
of the non-equilibrium current (1) due to Kravtsov and
Yudson [4].

The equivalence between Coulomb interactions and
fluctuating electromagnetic fields has been employed pre-
viously by Altshuler, Aronov and Khmelnitsky [6] in their
calculation of the dephasing rate due to electron-electron
interactions in disordered metals. See also reference [7] for
a recent study of interaction effects in mesoscopic conduc-
tors with the help of this approach.

The plan of the rest of this paper is as follows: in
Section 2 we shall use well-known functional techniques
to show how the above averaging procedure can be car-
ried out in practice, and elucidate the precise connection
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between non-linear response and electron-electron inter-
actions. In particular, we show that the non-equilibrium
current (1) is closely related to the Fock contribution to
the equilibrium persistent current, and that the non-linear
conductivity σ(2)(ω, φ) in equation (1) can be simply ob-
tained from the weak localization correction to the po-
larization of the system. In Section 3 we shall explicitly

evaluate the average non-equilibrium current I
(2)

as func-
tion of ω and φ, and compare our result with reference [4]
(here and below the over-bar denotes averaging over the
disorder). In Section 4 we discuss possibilities to test our
theory experimentally, and conclude in Section 5 with a
brief summary.

2 From interactions to non-linear response

In this section we shall map the problem of calculating the
equilibrium persistent current of interacting electrons onto
an effective non-equilibrium problem in imaginary time.
This is achieved by means of a Hubbard-Stratonovich
transformation, a well known technique in the theory of
strongly correlated electrons [8,9].

2.1 Definition of the problem

We consider a system consisting of electrons with charge
−e and mass m which are confined to a thin ring with
circumference L and cross section L2

⊥, with L⊥ � L.
The electrons interact with two-body Coulomb forces and
move in a static random potential U(r). Identifying the
position along the circumference of the ring with the x-
coordinate, the equilibrium current I around the ring can
be written as

I =
−e

L

∫
drj(r), (2)

where the integral is over the volume V = LL2
⊥ of the ring,

and the particle current density j(r) (in x-direction) can
be expressed in terms of the exact imaginary time Green’s
function G(r, r′, τ − τ ′) as

j(r) = lim
τ ′→τ

lim
r′→r

Ĵx,x′G(r, r′, τ − τ ′ − 0+)

= T

∞∑
n=−∞

eiω̃n0+

lim
r′→r

Ĵx,x′G(r, r′, iω̃n), (3)

with the differential operator

Ĵx,x′ ≡
1

2mi
(∂x − ∂x′) +

a

m
, a =

2π

L

φ

φ0
· (4)

Here φ0 = 2πc/e is the flux quantum, and we have intro-
duced the imaginary frequency Fourier transform of the
Green’s function,

G(r, r′, τ − τ ′) = T

∞∑
n=−∞

e−iω̃n(τ−τ ′)G(r, r′, iω̃n), (5)

where ω̃n = 2π(n + 1
2 )T . For simplicity, we shall work

with spinless electrons and use units where ~ and the
Boltzmann-constant are set equal to unity. This amounts
to measuring temperatures T and frequencies ω in units
of energy. The Green’s function at constant chemical po-
tential µ can be represented as a functional integral over
Grassmann fields ψ and ψ† in the usual way [9],

G(r, r′, τ − τ ′) = −

∫
D{ψ} e−S{ψ}ψ(r, τ)ψ†(r′, τ ′)∫

D{ψ} e−S{ψ}
, (6)

where S{ψ} = S0{ψ}+ Sint{ψ}, with

S0{ψ} = −
1

T

∑
kk′

ψ†k[Ĝ−1
0 ]kk′ψk′ , (7)

Sint{ψ} =
1

2T

∑
q

fqρ−qρq . (8)

Here ρq =
∑
k ψ
†
kψk+q , and the inverse non-interacting

Green’s function matrix in the momentum-frequency basis
for a given realization of the disorder potential is

[Ĝ−1
0 ]kk′ = δkk′

[
iω̃n −

(k + a)2

2m
+ µ

]
− δnn′Uk−k′ , (9)

where a is a vector potential directed along the circum-
ference of the ring (which in our convention is identified

with the x-direction), with magnitude a ≡ |a| = 2π
L

φ
φ0

. For

simplicity we have introduced collective labels k = [k, iω̃n]
and q = [q, iωn] for wave-vector and Matsubara frequen-
cies, where ω̃n = 2π(n + 1

2 )T is a fermionic frequency,
and ωn = 2πnT is a bosonic one. The Grassmann vari-
ables ψk are the Fourier components of the field ψ(r, τ),
i.e. ψ(r, τ) = V−1/2

∑
k e

i(k·r−ω̃nτ)ψk. The Fourier trans-
forms Uq of the disorder potential and fq of the Coulomb
potential are normalized such that both have units of en-
ergy [10], i.e.

Uq =
1

V

∫
dre−iq·rU(r), (10)

fq =
1

V2

∫
drdr′e−iq·(r−r′) e2

|r− r′|
· (11)

The disorder potential U(r) is assumed to have zero aver-
age and Gaussian white noise correlations, so that

UqUq′ = γ̃δq,−q′, (12)

where the parameter γ̃ is a measure for the strength of
the disorder. Within lowest order Born approximation we
may identify γ̃ = ∆/(2πτ), where ∆ is the average level
spacing at the Fermi energy, and τ is the elastic lifetime.

The evaluation of the above expression for the current
would require the solution of the many-body problem in
the presence of disorder, an impossible task. Perturbative
expansions can be performed in powers of the disorder po-
tential Uq and in powers of the Coulomb interaction fq.
This double expansion is rather subtle. To obtain sensible
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results which correctly take into account the physics of dif-
fusion and screening, infinitely many powers of Uq and fq

have to be summed. In order to make this expansion more
transparent and to see the connection with non-linear re-
sponse, we shall now map this problem onto an equivalent
problem where the two-body interaction is replaced by a
time-dependent auxiliary field.

2.2 Hubbard-Stratonovich transformation
and equivalent non-equilibrium problem

The two-body part Sint{ψ} of our effective action
can be decoupled by means of the following Hubbard-
Stratonovich transformation [8]

e−Sint{ψ} =∫
D{Φ} exp

[
−T2

∑
q f
−1
q Φ−qΦq − i

∑
q Φ−qρq

]
∫
D{Φ} exp

[
−T2

∑
q f
−1
q Φ−qΦq

] · (13)

Applying this transformation to the denominator and nu-
merator of equation (6), and integrating over the Grass-
mann field, the exact current density of the many-body
system can be written as

j(r) =

∫
D{Φ}e−Seff{Φ}j(r, τ, {Φ})∫

D{Φ}e−Seff{Φ}

≡ 〈j(r, τ, {Φ})〉Seff . (14)

The effective action Seff{Φ} is given by

Seff{Φ} =
T

2

∑
q

f−1
q Φ−qΦq − Tr ln

[
1− Ĝ0V̂

]
, (15)

where the matrix elements of the infinite matrix V̂ are
given by [V̂ ]kk′ = Vk−k′ = iTΦk−k′ . The quantity
j(r, τ, {Φ}) is the non-equilibrium current density for a
frozen configuration of the Hubbard-Stratonovich field,
i.e.

j(r, τ, {Φ}) = lim
r′→r

Ĵx,x′G(r, r′, τ, τ + 0+) . (16)

Here G satisfies the partial differential equation[
− ∂τ −

(−i∇r + a)2

2m
+ µ− U(r)

− V (r, τ)

]
G(r, r′, τ, τ ′) = δ(r− r′)δ∗(τ − τ ′), (17)

where the time-dependent potential V (r, τ) is defined by

V (r, τ) =
∑
q

ei(q·r−ωnτ)Vq , Vq = iTΦq , (18)

and δ∗(τ) = T
∑
n e
−iω̃nτ is the antiperiodic imaginary

time δ-function. Note that the potential V (r, τ) is a pe-
riodic function of τ , i.e. V (r, τ + 1/T ) = V (r, τ). On the

other hand, the fermionic Green’s function G has to satisfy
antiperiodic boundary conditions in each imaginary time
variable [11],

G(r, r′, τ + 1/T, τ ′) = −G(r, r′, τ, τ ′)

= G(r, r′, τ, τ ′ + 1/T ) . (19)

The above transformation is exact, and allows us to clarify
the precise connection between interactions and non-linear
response [4]. Note that equation (17) defines the imaginary
time non-equilibrium Green’s function of non-interacting
fermions subject to an external imaginary time potential
V (r, τ). Of course, for a comparison with experiments,
which measure the non-linear response to external fields,
we need to know the real time dynamics. While within lin-
ear response the well-known fluctuation-dissipation theo-
rem tells us how to obtain the real time response by simple
analytic continuation from an imaginary time formalism,
in the case of non-linear response the situation is more
complicated. Nevertheless, even then the analytic contin-
uation from the imaginary time response to real times is
possible, provided the time-dependence of the external po-
tential can be analytically continued, and the potential is
adiabatically switched on [12]. This point, which appar-
ently is not widely appreciated in the literature, has al-
ready been discussed in the classic textbook by Kadanoff
and Baym [11].

2.3 How functional averaging reproduces the
equilibrium current

For a calculation of the equilibrium persistent current to
first order in the RPA (random phase approximation)
screened interaction, it is sufficient to expand the effec-
tive action (15) and the non-equilibrium current-density
j(r, τ, {Φ}) defined in equation (16) to second order in the
Hubbard-Stratonovich field. The resulting Gaussian inte-
grations can then be performed exactly. In this approxi-
mation the effective action is given by

Seff{Φ} ≈ i
∑
q

N0(q)Φ−q

+
T

2

∑
qq′

[
δqq′f

−1
q +Π0(q, q′)

]
Φ−qΦq′ + ..., (20)

where

N0(q) = δn0N0(q) = T
∑
k

[Ĝ0]k+q,k, (21)

Π0(q, q′) = δnn′Π0(q,q′, iωn)

= −T
∑
kk′

[Ĝ0]k+q,k′+q′ [Ĝ0]k′k . (22)

Physically N0(q) is the spatial Fourier component of the
density, and Π0(q,q′, iωn) is the non-interacting polariza-
tion [10] for a given realization of the disorder potential
U(r). To expand the non-equilibrium current-density, it is
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Fig. 1. (a) Graphical representation of the current-density j
(1)
q

in linear response, see equation (27). The solid lines represent
non-interacting Green’s functions for fixed disorder potential,
the wavy lines represent the fields Vq, and the black triangle
denotes the current vertex (kx + a + qx/2)/m. (b) Graphical

representation of j
(2)
q .

convenient to consider the Fourier components,

j(r, τ, {Φ}) =
1

V

∑
q

ei(q·r−ωnτ)jq . (23)

Note that with this normalization the equilibrium current
defined in equation (2) is simply given by

I =
−e

L
〈jq=0〉Seff , (24)

where q = 0 means q = 0 and ωn = 0. For jq we obtain
the following expansion in powers of Vq = iTΦq,

jq = j(0)
q + j(1)

q + j(2)
q + . . . , (25)

where

j(0)
q = T

∑
k

kx + a+ qx/2

m
[Ĝ0]k+q,k, (26)

j(1)
q =

∑
q′

K(1)(q, q′)Vq′ , (27)

j(2)
q =

∑
q′q′′

K(2)(q, q′, q′′)Vq′Vq′′ . (28)

The linear response function K(1)(q, q′) can be identified
with the non-interacting correlation function between den-
sity and current-density,

K(1)(q, q′) = T
∑
kk′

kx + a+ qx/2

m

×[Ĝ0]k+q,k′+q′ [Ĝ0]k′,k . (29)

The quadratic response function is

K(2)(q, q′, q′′) = T
∑
kk′k′′

kx + a+ qx/2

m
[Ĝ0]k+q,k′+q′

×[Ĝ0]k′,k′′ [Ĝ0]k′′−q′′,k . (30)

Graphical representations of j
(1)
q and j

(2)
q are shown in

Figures 1a and b. It is instructive to see how functional
averaging of these expressions with the effective action

qq

a b

Fig. 2. Hartree contributions to the functional average of the
non-equilibrium current density given in equations (23, 25). (a)

Contribution from the linear response current j
(1)
q . (b) Contri-

bution from the quadratic response j
(2)
q . The double wavy line

is the RPA interaction.

(20) yields the well-known [13,14] interaction corrections
to the equilibrium current to first order in the RPA inter-
action. Of course, the equilibrium current is more easily
obtained from the derivative of the thermodynamic po-
tential with respect to the static flux [13,14], but the fol-
lowing calculation clarifies the close connection between
non-linear response and electron-electron interactions [4].
To perform the Gaussian integration, it is convenient to
first eliminate the linear term in equation (20) by redefin-
ing the Φ-field such that its Gaussian average vanishes.
This is achieved with the help of the shift-transformation
Φq = Φ̃q − iT−1

∑
q′ f

RPA
qq′ N0(q′), or equivalently for Vq =

iTΦq,

Vq = Ṽq +
∑
q′

fRPAqq′ N0(q′) . (31)

Here fRPAqq′ is the inverse of the infinite matrix with ele-

ments δqq′f
−1
q +Π0(q, q′). It follows that within the Gaus-

sian approximation

〈Ṽq〉Seff = 0, (32)

〈ṼqṼ−q′〉Seff = −TfRPAqq′ . (33)

Substituting equation (31) into equations (27, 28), and

averaging over the Ṽ -field in Gaussian approximation, it
is now easy to show that

〈j(1)
q 〉Seff =

∑
q′

∑
q1

K(1)(q, q′)fRPAq′q1 N0(q1), (34)

〈j(2)
q 〉Seff =

∑
q′q′′

∑
q1q2

K(2)(q, q′, q′′)fRPAq′q1
fRPAq′′q2

×N0(q1)N0(q2)− T
∑
q′q′′

K(2)(q, q′,−q′′)fRPAq′q′′ . (35)

Graphically equation (34) and the first term in equation
(35) can be represented by the Hartree diagrams shown
in Figure 2, while the second term in equation (35) is rep-
resented by the Fock diagram in Figure 3. To see that
for q = 0 equations (34, 35) reduce to the well-known
[13,14] first order (in the RPA interaction) corrections to
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the equilibrium current, we use the following exact iden-
tity ∑

k′

G0(k,k′, iω̃n)
k′x + a

m
G0(k′,k′′, iω̃n)

=
Lφ0

2π

∂

∂φ
G0(k,k′′, iω̃n), (36)

where [Ĝ0]kk′ = δnn′G0(k,k′, iω̃n). Equation (36) can be
easily proven by taking the derivative of both sides of
equation (17) (with V (r, τ) set equal to zero) with re-
spect to a. With the help of this identity we obtain for
the functional average of the linear response current (34)

−e

L
〈j

(1)
0 〉Seff = −

c

2

∑
qq′

fRPAqq′
∂

∂φ
[N0(−q)N0(q′)] , (37)

where fRPAqq′ ≡ f
RPA
q0,q′0 is the static RPA interaction. Sim-

ilarly, for q = 0, equation (35) can be written in the form

−e

L
〈j(2)

0 〉Seff = −
c

2

∑
qq′

[
∂

∂φ
fRPAqq′

]
N0(−q)N0(q′) + IF ,

(38)

where

IF = −
c

2

∑
qq′

T
∑
n

fRPAqiωn,q′iωn

∂

∂φ
Π0(q,q′, iωn) (39)

is the Fock contribution to the equilibrium persistent cur-
rent [13,14]. The sum of equation (37) and the first term
in equation (38) yield the (non self-consistent) Hartree
contribution to the equilibrium current,

IH = −
c

2

∂

∂φ

∑
qq′

fRPAqq′ N0(−q)N0(−q′) . (40)

We have argued elsewhere [15] that the neglect of self-
consistency in equation (40) does not properly take into
account the subtle interplay between disorder and interac-
tions, so that the correct order of magnitude of the Hartree
current can only be obtained by means of a self-consistent
calculation.

3 Quadratic response to an external electric
field

3.1 Derivation of the non-equilibrium current from the
Fock correction to the equilibrium current

Our rather unconventional derivation of the interaction
correction to the equilibrium current makes the connec-
tion between electron-electron interactions and non-linear
response manifest. In fact, from our derivation it is clear
that the Fock contribution (39) to the equilibrium current
is closely related to the non-equilibrium current given in
equation (1). Physically our Hubbard-Stratonovich field Φ

can be identified with the scalar potential of electromag-
netism, which is generated self-consistently by the motion
of the electrons [5,8]. Therefore the negative gradient of
our auxiliary potential V (r, τ) is the effective force acting
on the electrons, which in turn can be associated with an
internal electric field E(r, τ),

−eE(r, τ) = −∇V (r, τ) . (41)

Defining E(r, τ) =
∑
q e

i(q·r−ωnτ)Eq and using equation

(18), we have eEq = iqVq, or

Vq = −ie
q̂ ·Eq

|q|
, (42)

where q̂ = q/|q|. From equation (33) we thus conclude

TfRPAqq′ = −
e2

|q||q′|
〈(q̂ ·Eq)(q̂

′ ·E−q′)〉Seff , (43)

so that the Fock contribution (39) to the equilibrium cur-
rent can be written as

IF =
∑
qq′

σ(2)(q,q′, iωn)〈(q̂ ·Eq)(q̂
′ ·E−q′)〉Seff , (44)

where the non-linear conductivity σ(2)(q,q′, iωn) is given
by

σ(2)(q,q′, iωn) =
c

2

e2

|q||q′|

∂

∂φ
Π0(q,q′, iωn) . (45)

Note that functional averaging restores translational in-
variance in time, so that the average in equation (44) is
proportional to δnn′ . This equation shows that the Fock
current can be viewed as the sum of functionally averaged
non-equilibrium currents, generated in second order in the
internal electric fields associated with the motion of the
electrons. Clearly, the corresponding non-linear response
function σ(2) is a system property that should be inde-
pendent of the origin of the electric fields. In particular,
if we add an external electric field, equation (44) is still
valid provided we identify E with the total electric field.
Thus, after performing in equation (45) the usual analytic
continuation, iωn → ω + i0+, we conclude that the non-
linear conductivity σ(2)(ω, φ) defined in equation (1) can
be identified with

σ(2)(ω, φ) = lim
q,q′→0

σ(2)(q,q′, ω + i0+) . (46)

Recall that σ(2)(ω, φ) describes the time-independent part
of the non-equilibrium current that is proportional to the
intensity of a time-dependent, spatially uniform electric
field.

Two remarks are in order. The first concerns the an-
alytic continuation of the imaginary frequency response
to real frequencies. Because equation (45) relates a non-
linear response function to the flux-derivative of a linear
response function (the polarization), we may rely on the
fluctuation-dissipation theorem to relate real and imag-
inary time response. Of course, equation (45) can also
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be obtained with the help of the identity (36) from the
expression (30) for the general non-linear response func-
tion K(2)(q, q′, q′′). It is not difficult to see that quite
generally the correct real frequency response can be ob-
tained by replacing iωn → ω + i0+, iωn′ → ω′ + i0+, and
iωn′′ → ω′′ + i0+ for all frequencies [12].

Secondly, we would like to emphasize that so far we
have not averaged over the disorder potential, i.e. all equa-
tions given above are valid for an arbitrary realization of
U(r). In the following subsection we shall start from equa-
tion (46) to perform the disorder average of the non-linear
conductivity. This has the advantage that we only need to
average a product of two Green’s functions. Note that in
the work [4] the average of the non-linear conductivity has
been calculated directly from equations (28, 30).

3.2 The relation between non-linear conductivity,
polarization, and linear conductivity

Using the fact that Π0(q,q′, iωn) = δqq′Π0(q, iωn),
we see from equations (44, 45) that the disorder aver-
aged static non-equilibrium current that is generated at
quadratic order in a space- and time-dependent longitudi-
nal electric field with Fourier components E(q, ω) is given
by

I
(2)

= σ(2)(q, ω, φ)|E(q, ω)|2, (47)

with

σ(2)(q, ω, φ) =
c

2

e2

q2

∂

∂φ
Π0(q, ω) . (48)

We thus need to know the flux-dependent part of the dis-
order averaged polarization of the ring. For frequencies
|ω| <∼ ∆ and wave-vectors |q| <∼ 2π/` (where ` = vF τ is
the elastic mean free path) non-perturbative methods are
necessary to calculate this quantity [16]. Here we are in-
terested in the high frequency regime |ω| >∼ ∆, where we
may use the impurity diagram technique [17]. However,
for |ω|τ <

∼ 1 and |q|` <∼ 1 the direct diagrammatic calcu-
lation of ∂

∂ϕ
Π0(q, ω) is not so easy, because there exists

non-trivial cancellations between vertex corrections to the
density vertices [14,18]. Physically, these corrections arise
from the diffusive motion of the electrons in the disordered
metal. To take these corrections into account without hav-
ing to perform complicated manipulations, we use the ex-
act relation between irreducible polarization and longitu-
dinal conductivity σ(q, ω) [19], which in our normalization
[10] reads

Π(q, ω) = i
q2

ω

V

e2
σ(q, ω) . (49)

From equation (48) we thus obtain

σ(2)(q, ω, φ) =
c

2

V

(−iω)

∂

∂φ
σ(q, ω) . (50)

At finite q, the dynamic conductivity has a diffusion pole
[19]. In fact, according to reference [20] in the limit of
small wave-vectors and frequencies

σ(q, ω) =
iω

iω −D(ω)q2
σ(ω), (51)

where σ(ω) = σ(0, ω), and the frequency-dependent diffu-
sion coefficient D(ω) is related to the dynamic conductiv-
ity via [20]

D(ω)

D0
=
σ(ω)

σ0
· (52)

Here D0 is the classical diffusion coefficient, which is re-
lated to the Drude conductivity σ0 via the Einstein rela-
tion D0 = (∆V)−1e2σ0. We thus conclude

σ(2)(q, ω, φ) =
c

2
V
∂

∂φ

[
σ(ω)

D(ω)q2 − iω

]
. (53)

Diagrammatically, the diffusion pole in equations (51, 53)
implicitly takes the so-called diffusion diagrams into ac-
count [17]. On the other hand, the weak-localization cor-
rections described by the Cooperon diagrams have to be in-
cluded explicitly in the calculation σ(ω) and D(ω). These
diagrams are responsible for the dominant dependence on
the magnetic flux.

3.3 Averaging over disorder

According to equations (52, 53) the average non-linear
conductivity can be expressed in terms of the flux-
dependent part of the average linear conductivity. The
latter is determined by the famous weak localization cor-
rection arising from coherent backscattering [17],

∂

∂φ
σ(ω) = −

e2D0

πV

×
∂

∂φ

∑
Q

′ 1

D0(Q + 2a)2 − iω +D0/L2
ϕ

, (54)

where the prime means that the sum is restricted to
|Q| <∼ 2π/`, and Lϕ is the dephasing length [17]. Scaling
out the Thouless energy Ec = D0/L

2 and setting now
q = 0 in equation (53), we obtain from equation (54)

σ(2)(ω, φ) =
cEc(eL/Ec)

2

(−iω̄)φ0
g(ω, φ), (55)

where ω̄ = ω/Ec, and the dimensionless function g(ω, φ)
is given by

g(ω, φ) = −
φ0

2π

∂

∂φ

∑
Q

′ Ec

D0(Q + 2a)2 − iω +D0/L2
ϕ

·

(56)
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For a thin ring with L⊥ <
∼ ` the Q-summation in equation

(56) is one-dimensional, and can be carried out exactly,
with the result

g(ω, φ)=
2e−W

W

sin(4πφ/φ0)[1−e−2W ]

[1−2e−W cos(4πφ/φ0)+e−2W ]
2 · (57)

HereW =
√

(L/Lϕ)2 − iω̄, where the root has to be taken
such that <W ≥ 0. For |W | � 1 this reduces to

g(ω, φ) =
4 sin(4πφ/φ0)[

4 sin2(2πφ/φ0)− iω̄ + (L/Lϕ)2
]2 · (58)

Note that by definition Lϕ � L in a mesoscopic sys-
tem, so that for |ω| � Ec the parameter |W | is smaller
than unity. On the other hand, for |ω| >∼ Ec the prefactor

e−W in equation (57) reduces to exp[−
√
|ω̄|/2], so that

the non-linear conductivity becomes exponentially small.
We disagree in this point with Kravtsov and Yudson [4],
who found that the non-linear conductivity in the regime
Ec � ω � τ−1 is finite and approximately frequency-
independent. In view of the close connection between the
non-linear conductivity and the Fock contribution to the
equilibrium persistent current discussed above, we think
that our result is physically more reasonable. The fact that
for |ω| � Ec the non-linear conductivity (55) is exponen-
tially small is closely related to the exponential suppres-
sion of the contribution from Matsubara frequencies larger
than Ec to the average Fock current IF in equation (39).

4 Possible experimental tests

For simplicity, let us consider a time-dependent but spa-
tially constant external electric field along the circumfer-
ence of the ring,

E(t) = E(ω) cos(ωt) . (59)

Because at zero wave-vector and finite frequencies the
polarization Π(0, ω) vanishes, this field is not screened.
Hence, q̂ · E(q = 0, ω) in equation (47) can be identi-
fied with the external field E(ω). Experimentally, the field
(59) can be generated by a time-dependent magnetic flux
through the center of the ring,

φ(t) = φ+ φ(ω) sin(ωt) . (60)

By Faraday’s law of induction, the relation between E(ω)
and φ(ω) is

eLE(ω) = 2πω
φ(ω)

φ0
· (61)

Note that in the experiment [2] the current was measured
in the presence of such a time-dependent flux with fre-
quencies in the range between 10 and 103 Hz. In this range
no frequency-dependence of the current was detected, so
that apparently the measurements were performed in the
static limit. Note, however, that in principle one should

distinguish between the thermodynamic equilibrium cur-
rent that is determined by the flux-dependent part of the
free energy, and the dynamic current that is obtained from
the time-dependent response in the limit of vanishing fre-
quency [21]. In the present work we are interested in the
frequency range ∆ � ω � τ−1, corresponding to fre-
quencies between 108 and 1013 Hz. We predict that the
static non-equilibrium current should become exponen-
tially small as soon as the frequency of the electric field
exceeds the Thouless energy Ec. This effect can be used to
directly measure the Thouless energy of a mesoscopic ring.
For the rings used in reference [2] the time-dependent non-
equilibrium current should disappear for ω ≈ 1010 Hz. We
would like to emphasize that this prediction can be veri-
fied without any modifications of the experimental setup
used in references [2,3].

Because the non-equilibrium current I
(2)

is driven by
an external time-dependent flux φ(ω), it can be easily
distinguished from the thermodynamic equilibrium cur-
rent. Let us now discuss the expected size of this non-
equilibrium current. Given the fact that the external field
in equation (59) has a cos-dependence, the experimentally
measured non-equilibrium current is determined by the
real part of the non-linear conductivity,

I
(2)

= <
[
σ(2)(ω, φ)

] [ ω
eL

]2 [2πφ(ω)

φ0

]2

. (62)

For frequencies |ω| <∼ Ec we may use equation (58) to sim-
plify the non-linear conductivity, so that in this regime we
obtain after some rescalings

I
(2)
≈ −

cEc

φ0

[
2πφ(ω)

φ0

]2

|ω̄|−1/2f(φ̄, ω̄, γ), (63)

where φ̄ = φ/φ0, ω̄ = ω/Ec, γ = D0/(L
2
ϕ|ω|). Defining the

dimensionless variable

X = 2
sin(2πφ̄)√
|ω̄|

, (64)

the function f(φ̄, ω̄, γ) can be written as

f
(
φ̄, ω̄, γ

)
= 8 cos(2πφ̄)

X[γ +X2][
1 + [γ +X2]

2
]2 · (65)

A graph of f(φ̄, ω̄, γ) as function of φ̄ = φ/φ0 for ω̄ = 0.1
and γ = 1 is shown in Figure 4. Obviously the size of

the current I
(2)

in equation (63) is determined by three
experimentally controllable parameters: φ(ω), φ, and ω.
Let us find the values of these parameters that maximize
the current. Obviously φ(ω) should be chosen as large as
possible. It should be kept in mind, however, that equation
(63) is the quadratic order in a systematic expansion in
powers of φ(ω)/φ0. Higher orders should be negligible as
long as |φ(ω)| � φ0. Thus, the largest value of |φ(ω)|
where equation (63) can be expected to be accurate is

|φ(ω)| ≈
φ0

2π
· (66)
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q
Fig. 3. Fock contribution to functional average of j(2).
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Fig. 4. f(φ̄, ω̄, γ) as function of φ/φ0 for ω̄ = 0.1 and γ = 1.

Next, consider the optimal choice of the frequency. Be-
cause of the factor of |ω̄|−1/2 in equation (63), it is ad-
vantageous to choose the frequency as small as possible.
However, our perturbative calculation breaks down for fre-
quencies of the order of the mean level spacing ∆. The
optimal choice is therefore

ω ≈ ∆. (67)

Finally, from equation (65) and Figures 5, 6 it is clear that

the function f̃(X, γ) ≡ f/ cos(2πφ̄) has a maximum at a
value Xm(γ) = O(1) (provided γ is not too large). This
implies that for |ω| � Ec the non-equilibrium current is
maximal at the static flux φ = φm, where

φm =
φ0

4π

√
|ω|

Ec
Xm

(
D

L2
ϕ|ω|

)
. (68)

The function Xm(γ) is shown in Figure 6. From equa-
tion (64) we also see that the width ∆φ of the interval
around φm (modulo φ0/2) where the current is enhanced
is ∆φ ≈ φ0|ω̄|1/2/(4π). Outside this interval, which is
rather narrow for |ω̄| � 1, the non-equilibrium current
is much smaller than at the maxima (see Fig. 4). In fact,
for |φ− φm| � ∆φ the parameter |X| in equation (64) is
large compared with unity, so that we may approximate

f
(
φ̄, ω̄, γ

)
≈
|ω̄|5/2

4

cos(2πφ̄)

sin5(2πφ̄)
, |X| � 1, (69)

where we have assumed that γ <
∼ 1. Using 2 sin2(x) = [1−

cos(2x)], the non-equilibrium current in this regime can
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Fig. 5. f̃(X, γ) = f/ cos(2πφ̄) as function of X (see Eq. (64))
for γ = 1.
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Fig. 6. Position of the maximum Xm(γ) of f̃(X, γ) as function
of γ. For γ = 0 it is easy to show that Xm(0) = (3/5)1/4 ≈ 0.88,
while Xm(γ) ∝

√
γ for γ →∞.

be written as

I
(2)
≈ −

cEc

φ0

[
2πφ(ω)

φ0

]2

|ω̄|2
sin(4πφ̄)

[1− cos(4πφ̄)]3
· (70)

For the parameters of the experiment [2] (taking now the
spin degeneracy into account), we find that at the opti-
mal values of the parameters given in equations (66–68)
the maximal amplitude of the non-equilibrium current is

I
(2)

max ≈ 5 × 10−3evF /L. This current has the same or-
der of magnitude as the equilibrium current measured in
references [2,3], and therefore should be measurable with
the available technology. The rather pronounced peaks of

I
(2)

as function of φ for small values of φ (modulo φ0/2)
distinguish the non-equilibrium current from the thermo-
dynamic persistent current.
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5 Summary

In this paper we have presented a thorough theoretical
analysis of the static non-equilibrium current I(2) in a
mesoscopic metal ring threaded by a magnetic flux, which
is generated in quadratic response to a time-dependent
electric field. Using a path integral approach, we have
shown that this non-equilibrium current is closely related
to the screened exchange contribution to the thermody-
namic persistent current [13,14]. In fact, from equations
(39, 44, 45) it is obvious that the weight of the RPA
screened interaction in the exchange correction to the
equilibrium persistent current at fixed energy-momentum
transfer is essentially given by the non-linear conductiv-
ity σ(2)(ω, φ) associated with I(2). This observation has
allowed us to derive the relation (48) between the non-
linear conductivity and the flux-dependent part of the
polarization. Thus, the disorder average σ(2)(ω, φ) of the
non-linear conductivity is directly related to the weak-
localization correction to the average polarization, which
in turn can be expressed in terms of the weak-localization
correction to the linear conductivity. In other words, the
average non-linear conductivity is directly related to the
weak localization correction to the linear conductivity.

A measurement of the average static non-equilibrium

current I
(2)

in a mesoscopic metal ring as function of fre-
quency and static flux would be very interesting for sev-
eral reasons. Such a measurement would directly probe the
weak localization corrections to the frequency-dependent
polarization and the linear conductivity of the system.
In contrast to Kravtsov and Yudson [4], we predict that
the static non-equilibrium current should be exponentially
suppressed when the external frequency exceeds the Thou-
less energy [22]. This is in agreement with the close con-
nection between the non-equilibrium current I(2) and the
Fock contribution IF to the equilibrium persistent cur-
rent. The latter is known to be exponentially suppressed
if the temperature becomes larger than the Thouless en-
ergy [13]. Note that in this case the temperature acts
as an infrared cutoff, just like the external frequency in
the case of the non-equilibrium current. Our theory can
be verified experimentally from the measurement of the
time-independent non-linear current response of a meso-
scopic metal ring pierced by a time-dependent external
flux φ(t) of the form (60), with frequencies in the range
∆ <
∼ ω � τ−1. We hope that such an experiment will be

done in the near future.

We would like to thank Kurt Schönhammer for his construc-
tive comments. This work was supported by the Deutsche
Forschungsgemeinschaft (SFB 345).
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